Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.).
نویسندگان
چکیده
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (p>0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (r=0.78, p<0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (p<0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.
منابع مشابه
Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings.
Arsenic contamination of rice is widespread, but the rhizosphere processes influencing arsenic attenuation remain unresolved. In particular, the formation of Fe plaque around rice roots is thought to be an important barrier to As uptake, but the relative importance of this mechanism is not well characterized. Here we elucidate the colocalization of As species and Fe on rice roots with variable ...
متن کاملDo radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differe...
متن کاملHydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.
The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in...
متن کاملMitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment--a field experiment in Hunan, China.
A field experiment was conducted to investigate the effect of bean stalk (BBC) and rice straw (RBC) biochars on the bioavailability of metal(loid)s in soil and their accumulation into rice plants. Phytoavailability of Cd was most dramatically influenced by biochars addition. Both biochars significantly decreased Cd concentrations in iron plaque (35-81 %), roots (30-75 %), shoots (43-79 %) and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2011